$\qquad$ Name: $\qquad$

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION(2019 SCHEME), DECEMBER 2019

## Course Code: MAT101

## Course Name: LINEAR ALGEBRA AND CALCULUS (2019-Scheme)

Max. Marks: 100
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks.
1 Determine the rank of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 5\end{array}\right]$
If 2 is an eigen value of $\left[\begin{array}{crr}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$, without using its characteristic equation, find the other eigen values.

If $f(x, y)=x e^{-y}+5 y$ find the slope of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ in the x -direction at $(4,0)$.
4 Show that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$, where $z=e^{x} \sin y+e^{y} \cos x$
Find the mass of the square lamina with vertices $(0,0)(1,0)(1,1)$ and $(0,1)$ and
density function $x^{2} y$
6 Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.
$7 \quad$ Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{2 k+1}$
$8 \quad$ Check the convergence of $\sum_{k=1}^{\infty} \frac{1}{k^{k / 2}}$
9 Find the Taylors series for $f(x)=\cos x$ about $x=\frac{\pi}{2}$ up to third degree terms.
10 Find the Fourier half range sine series of $f(x)=e^{x}$ in $0<\mathrm{x}<1$

## PART B

 Answer one full question from each module, each question carries 14 marks
## Module-I

11 a) Solve the system of equations by Gauss elimination method.

$$
\begin{array}{r}
x+2 y+3 z=1 \\
2 x+3 y+2 z=2 \\
3 x+3 y+4 z=1 \tag{7}
\end{array}
$$

b) Find the eigenvalues and eigenvectors of

$$
\left[\begin{array}{ccc}
4 & 2 & -2  \tag{7}\\
2 & 5 & 0 \\
-2 & 0 & 3
\end{array}\right]
$$

12 a) Find the values of $\lambda$ and $\mu$ for which the system of equations

$$
\begin{aligned}
& 2 x+3 y+5 z=9 \\
& 7 x+3 y-2 z=8 \\
& 2 x+3 y+\lambda z=\mu
\end{aligned}
$$

has (i) no solution (ii) a unique solution and (iii) infinite solution
b) Find the matrix of transformation that diagonalize the matrix
$A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$. Also write the diagonal matrix.

## Module-II

13 a) Let f be a differentiable function of three variables and suppose that
$w=f(x-y, y-z, z-x)$, show that $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}=0$
b) Locate all relative extrema of $f(x, y)=4 x y-y^{4}-x^{4}$

14 a) Find the local linear approximation L to the function $f(x, y)=\sqrt{x^{2}+y^{2}}$
at the point $\mathrm{P}(3,4)$.Compare the error in approximating f by L at the point $\mathrm{Q}(3.04,3.98)$ with the distance PQ .
b) The radius and height of a right circular cone are measured with errors of at most $1 \%$ and $4 \%$, respectively. Use differentials to approximate the maximum percentage error in the calculated volume.

## Module-III

15 a) Evaluate $\iint_{R} y d x d y$ where $R$ is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
b) Use double integral to find the area of the region enclosed between the
parabola $y=\frac{x^{2}}{2}$ and the line $y=2 x$.
16
a) Evaluate $\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{x^{2}} d x d y$ by reversing the order of integration
b) Use triple integrals to find the volume of the solid within the cylinder
$x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$.

## Module-IV

17 a) Find the general term of the series $1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\ldots \ldots$.and use the ratio test to show that the series converges.
b) Test whether the following series is absolutely convergent or conditionally
convergent $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k(k+1)}}$
18
a) Test the convergence of $\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\ldots \ldots \ldots . \frac{x^{k}}{k(k+1)}+-------$
b) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{(k+1)!}{4!k!4^{k}}$

## Module-V

19 a) Find the Fourier series of periodic function with period 2 which is given
below $f(x)=\left\{\begin{array}{c}-x ;-1 \leq x \leq 0 \\ x ; 0 \leq x \leq 1\end{array}\right.$. Hence prove that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+---=\frac{\pi^{2}}{8}$
b) Find the half range cosine series for $f(x)= \begin{cases}k x & 0 \leq x \leq L / 2 \\ k(L-x) & L / 2 \leq x \leq L\end{cases}$

20
a) Find the Fourier series of $f(x)=\left\{\begin{array}{lc}0 & -\pi<x<0 \\ x^{2} & 0<x<\pi\end{array}\right.$
b) Obtain the Fourier series expansion for ${ }^{`} f(x)=x^{2},-\pi<x<\pi$.

